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S-matrix meets Black Holes

c©APS

Black Holes: the most perfect macroscopic objects there are in the universe: the only

elements in their construction are our concepts of space and time. (S. Chandrasekhar)

Scattering amplitudes: the most perfect microscopic structures in the universe (L. Dixon)

Ideas from amplitudes (QFT) are playing a crucial role in understanding (binary) black holes

in the era of gravitational wave astronomy.
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Feynman meets Einstien

I will talk about how to use advanced Feynman integration techniques to solve
the classical two-body problem in Einstein’s General Relativity.
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Post-Minkowskian EFT

Worldline EFT [follow Gregor’s talk] Lint = GL1 + G2L2 + G3L3 + · · ·

∆pµa =

∫ ∞

−∞
dτa

(
−ηµν

∂Lint

∂xνa

)

Feynman diagrams: 3rd order in Newton’s constant G (aka 3PM)

Feynman integrals Kälin, ZL, Porto, 2007.04977

I
(ab)
i1i2;a1···a5 = e2γEε

∫
dDk1d

Dk2

πD
δ(k1 ·ua)δ(k2 ·ub)

Ai11A
i2
2D

a1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5

with
D1 = k2

1 , D2 = k2
2 , D3 = (k1+k2−q)2, D4 = (k1−q)2, D5 = (k2−q)2

A1 = k1 ·u/a± i0, A2 = k2 ·u/b± i0 q · ua = 0, u2
a = 1, u1 · u2 = γ

The dependence of q2 is fixed by their mass dimensions; they are single-scale integrals!
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Reverse Unitarity

Optical theorem

Im ⇐⇒
∫
dΦ

Reverse Unitarity: use the optical theorem backwards and express inclusive phase space

integrals as unitarity cuts of loop integrals. [Anastasiou,Melnikov ’02; Anastasiou, Dixon,Melnikov, Petriello ’03]

LHC physics: it has been successfully used to do precision computations for Higgs production

to N3LO at LHC. Anastasiou, Duhr, Dulat, Herzog,Mistlberger, 1503.06056

GW physics: replace the delta-function by the cut-propagator Kälin, ZL, Porto, 2007.04977

δ(ki ·ua) →
1

2πi

(
1

ki ·ua − i0
−

1

ki ·ua + i0

)

Then standard loop-integral techniques can be applied straightforwardly!
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IBP & Master Integrals

Integration-By-Parts (IBP):
∫ ∏

i

dDki
∂

∂kµj

(
vµ

Da1
1 D

a2
2 · · ·

)
= 0

IBP gives a large homogeneous linear system of Feynman integrals.

Master Integrals: By solving the IBP identities, we can write many integrals as a linear

combination of a small number of basis integrals {I1, I2, ...}:

I =
∑

i
ci Ii

Publicly available programs: FIRE, LiteRed, Kira, Reduze, AIR.

3PM master integrals

{
I

(12)
00;11011, I

(12)
00;11100, I

(12)
00;00211, I

(12)
00;21100, I

(12)
00;10110, I

(12)
00;11111, I

(12)
00;11211, I

(12)
11;11100

}

Precision predictions rely mainly on our ability to evaluate (master) integrals.
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Multiple Polylogarithms

Which numbers/functions appear in analytic results for Feynman integrals? Duhr 1411.7538

A large class of functions are Goncharov’s multiple polylogarithms (MPLs) math/0103059

G(a1, . . . , an; z) =

∫ z

0

dt

t − a1
G(a2, . . . , an; t), G( ; z) = 1, G(~0n; z) =

1

n!
logn(z)

MPLs contain the well-known classical polylogarithms

Lin(z) = −G(~0n−1, 1; z)

and harmonic polylogarithms (HPLs) Remiddi&Vermaseren, hep-ph/9905237

H~a(z) = (−1)pG(~a ; z), ai ∈ {0,±1}

Transcendental weights T : the number of iterated integrations in the definition

T (1) = 0, T (log x) = 1, T (ζn) = T (Lin1) = n, T (π) = 1 ⇐= ζ2 =
π2

6
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Differential equations

A powerful tool for analytic evaluation of master integrals:

d~f0(x, ε)

dx
=M0(x, ε)~f0(x, ε)

where D = 4− 2ε, ~f0 = {I1, . . . , IN}.
In 2013, Henn observed if all functions in a basis ~f = {f1, . . . , fN} have uniform transcen-

dental (UT) weights, the differential equations get dramatically simplified Henn 1304.1806

d~f (x, ε)

dx
= εM(x) ~f (x, ε)

Such basis is called the UT or canonical or pure basis. Then the master integrals can be

solved in terms of Chen’s iterated integrals (MPLs) in any order in ε. Henn 1412.2296

Lee has proposed a complete algorithm to automate finding a canonical basis. Lee 1411.0911

Available programs: epsilon, Fuchsia, Libra, CANONICA, INITIAL.

While these notions mainly originate in N = 4 SYM, they have been extensively applied in

string theory, the Standard Model and recently GW physics. Arkani-Hamed et al. 1012.6032
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Canonical basis

For our 3PM computations, the canonical basis takes

f1 = ε4 I11011, f2 = ε4
√
γ2−1 I11100,

f3 = ε3
√
γ2−1 I00211, Ia1···a5 ≡ I

(12)
00;a1···a5

f4 = −
3ε4(γ2−1)

γ
I11100 +

ε3 (γ2−1)

2γ
I00211 +

ε2 (2ε+ 1)

2γ
I21100

f5 =
ε2 (8ε2−6ε+1)√

γ2−1
I10110, f6 = ε4

√
γ2−1 I11111,

f7 =
ε3
(

2(γ2 + 1)ε+ 1
)

2γ
I11111 +

ε3 (γ2 − 1)(ε+ 1)

2γ(2ε+ 1)
I11211 + · · ·

f8 =
1

16
ε4 (γ2−1) I

(12)
11;11111

Kälin, ZL, Porto, 2007.04977 (a long paper in preparation)
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Canonical differential equations

With the canonical basis, the differential equations take a nice form

d~f = ε
(
H0 d log x +H+ d log(1+x) +H− d log(1−x)

)
~f , γ =

x2 + 1

2x

with

H0 =




0 0 0 0 0 0 0 0

0 −6 0 −1 0 0 0 0

0 0 2 −2 0 0 0 0

0 12 2 0 0 0 0 0

0 0 0 0 2 0 0 0

0 0 4 2 4 2 −2 0

0 12 8 0 8 2 −2 0

0 0 1 0 0 0 0 0




, H± =




0 0 0 0 0 0 0 0

0 6 0 0 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −2 0 0 0

0 0 −4 0 −4 −2 0 0

±4 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0




Kälin, ZL, Porto, 2007.04977 Parra-Martinez, Ruf&Zeng, 2005.04236
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Boundary conditions

We take the static boundary condition: γ = 1√
1−β2

→ 1 Kälin, ZL, Porto, 2007.04977

Ka1···a5 = 3

1

4

5

2

=

∫
dD−1k1d

D−1k2

πD−1

e2γEε

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5

Only two master integrals are needed

K11100 = (q2)−2ε e2γEε
Γ3(1/2−ε) Γ(2ε)

Γ(3/2−3ε)

K11011 = (q2)−2ε−1 e2γEε
Γ4(1/2−ε) Γ2(ε+1/2)

Γ(1−2ε)

Very interestingly, these integrals are building blocks in Post-Newtonian computations!

PM integrals are naturally related to PN (boundary) integrals via differential equations!
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Master integrals

f1 = ε4 +O(ε5), f5 = 0

f2 = ε3 log(x)

π2
+ ε4

(
6H−1,0(x)

π2
−

6H1,0(x)

π2
−

3 log2(x)

π2
−

1

2

)
+O(ε5)

f3 = ε3 2 log(x)

π2
+ ε4

(
−

4H−1,0(x)

π2
+

4H1,0(x)

π2
+

2 log2(x)

π2
+

1

3

)
+O(ε5)

f4 = −
ε2

π2
+ ε4

(
8 log2(x)

π2
+

7

6

)
+O(ε5)

f6 = −ε3 2 log(x)

π2
+ ε4

(
−

4H−1,0(x)

π2
+

4H1,0(x)

π2
+

2 log2(x)

π2
+

1

3

)
+O(ε5)

f7 = ε4

(
12 log2(x)

π2
+ 2

)
+O(ε5)

f8 = ε4

(
log2(x)

π2

)
+ b.c. +O(ε5)

Kälin, ZL, Porto, 2007.04977 (a long paper in preparation) Parra-Martinez, Ruf&Zeng, 2005.04236
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3PM results

Impulse at 3PM order: Kälin, ZL, Porto, 2007.04977

∆pµ1 =
G3bµ

|b2|2

(
16m2

1m
2
2(4γ4 − 12γ2 − 3)

(γ2 − 1)
Arcsinh

√
γ − 1

2

−
4m2

1m
2
2γ(20γ6−90γ4+120γ2−53)

3(γ2 − 1)5/2
−

2m1m2(m2
1+m2

2)(16γ6−32γ4+16γ2−1)

(γ2 − 1)5/2

)

+
3π

2

(
2γ2−1

)
(5γ2−1)

(γ2 − 1)2

G3m1m2(m1+m2)

|b2|3/2

(
(m1 + γm2)uµ2 − (m2 + γm1)uµ1

)

We obtained the famous arcsinh function, first observed via a PN-type resummation.
[Bern, Cheung, Roiban, Shen, Solon, Zeng (BCRSSZ), 1901.04424&1908.01493]

log x = −2 Arcsinh

√
γ − 1

2
γ =

x2 + 1

2x

From the impulse we obtained the scattering angle. Perfect agreement with BCRSSZ!
See Gregor’s talk
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Finite-size effects

As analogues of effective operators in the SM, we also studied tidal operators

−
C

4
HGaµνG

aµν ⇐⇒

(
Rµανβv

αvβ
)2
,
(
∇⊥{µRναρ}βvαvβ

)2

(
R?µανβv

αvβ
)2
,
(
∇⊥{µR?ναρ}βvαvβ

)2

These operators describe the tidal deformability of neutron stars. Kälin, ZL, Porto, 2008.06047

Otidal =
1

M2
Pl

+
1

M3
Pl

+ · · ·

We computed the quadrupolar and octupolar tidal corrections to NLO in PM expansion.

Quadrupolar part is in perfect agreement with Cheung & Solon [2006.06665]

We obtained the NLO octupolar corrections for the first time.

All results are consistent with the test-body limit & the existing Post-Newtonian literature.
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Conclusions

Many ideas and state-of-the-art techniques from QFT have already proven useful

to improve theoretical predictions for Gravitational Wave observables:

Effective Field Theory (see Gregor’s talk)

Scattering amplitudes & special functions

Multi-loop techniques (IBP, differential eqs,...)

PM dynamics can be nicely bootstrapped from PN physics!

The first complete classical derivation of conservative dynamics of binaries to 3PM order.

Quadrupolar and octupolar tidal corrections to NLO.

On-going: higher order, spin effects,...
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Thanks for Your Attention !


